1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
| import os
from keras.datasets import mnist
from keras import utils
from keras.optimizers import SGD
from keras.models import Sequential
from keras.layers import Dense
import numpy as np
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 载入数据
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# (60000,28,28)
print('x_shape:', x_train.shape)
# (60000)
print('y_shape', y_train.shape)
# (60000,28,28)->(60000,784)
x_train = x_train.reshape(x_train.shape[0], -1)/255.0
x_test = x_test.reshape(x_test.shape[0], -1)/255.0
# 换one hot格式
y_train = utils.to_categorical(y_train, num_classes=10)
y_test = utils.to_categorical(y_test, num_classes=10)
# 创建模型,输入784个神经元,输出10个神经元
model = Sequential([
Dense(units=10, input_dim=784, bias_initializer='one', activation='softmax')
])
# 定义优化器
sgd = SGD(learning_rate=0.2)
# 设置loss function,训练过程中准确率
model.compile(optimizer = sgd, loss='mse', metrics=['accuracy'])
# 训练模型,6w张图每次拿32张训练
model.fit(x_train, y_train, batch_size=32, epochs=10)
# 评估模型
loss,accuracy = model.evaluate(x_test, y_test)
print('\ntest loss', loss)
print('accuracy', accuracy)
|