/images/avatar.jpg

pytorch手写数字识别

https://venturebeat.com/wp-content/uploads/2019/06/pytorch-e1576624094357.jpg

一个例子

csv在这里下载

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

# 加载数据集
train_dataset = datasets.MNIST('data/', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('data/', train=False, download=True, transform=transform)

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)

# 定义神经网络模型
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.layer1 = nn.Linear(784, 128)
        self.layer2 = nn.Linear(128, 64)
        self.layer3 = nn.Linear(64, 10)

    def forward(self, x):
        x = torch.relu(self.layer1(x))
        x = torch.relu(self.layer2(x))
        x = self.layer3(x)
        return x

# 实例化模型
model = NeuralNetwork()

# 定义损失函数和优化器
loss_func = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练模型
epochs = 5
for epoch in range(epochs):
    for batch, (images, labels) in enumerate(train_loader):
        optimizer.zero_grad()
        outputs = model(images.view(-1, 784))
        loss = loss_func(outputs, labels)
        loss.backward()
        optimizer.step()

# 在测试集上评估模型
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        outputs = model(images.view(-1, 784))
        _, predicted = torch.max(outputs, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
    accuracy = correct / total
    print(f"Accuracy: {accuracy}")

以上代码分为几个过程

Keras 简单尝试

一个demo

csv在这里下载

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import os
# Create first network with Keras
from keras.models import Sequential
from keras.layers import Dense
import numpy
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",", skiprows=1)
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu')) 
model.add(Dense(8, bias_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model
model.fit(X, Y, epochs=150, batch_size=10)
# evaluate the model
scores = model.evaluate(X, Y)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

最小二乘法和线性回归

最小二乘法

早在19世纪,勒让德就认为让"误差的平方和最小"估计出来的模型是最接近真实情形的。
按照勒让德的最佳原则,于是就是求:
$$ \text{L} = \sum_{i=1}^{n} \left( y_i - f(x_i) \right)^2 $$ 这个目标函数取得最小值时的函数参数,这就是最小二乘法的思想想,所谓"二乘"就是平方的意思。从这里我们可以看到,最小二乘法其实 就是用来做函数拟合的一种思想
至于怎么求出具体的参数那就是另外一个问题了,理论上可以用导数法、几何法,工程上可以用梯度下降法。下面以最常用的线性回归为 例进行推导和理解。
机器学习中用于回归问题的损失函数(Loss Function)是均方误差(MSE): $$ \text{L} = \frac{1}{2n} \sum_{i=1}^{n} \left( y_i - f(x_i) \right)^2 $$ 其实就是多了个1/2n。

二维异形件排版算法(摘抄)

算法简介

排样问题(Nesting Problem)又称为下料问题(Cutting and stock problems)或填充问题(Packing Problem),其目标是在材料切割过程中寻找一个较高的材料利用率。排样问题属于经典的NP-Hard问题,其时间复杂度随着问题规模的增加迅速上升,难以在合理时间内精确求解大规模实例。相较于矩形排样问题,异形件排样问题的突出特点是裁片的边界轮廓复杂,计算过程中需要复杂的几何运算,其算法复杂度将进一步上升,是学术界和工业界公认的难以求解的问题。因此在大多数情况下,不规则形状排样算法主要是以启发式算法和智能搜索算法为主。